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Abstract: Maps of irrigated areas are essential for Ghana’s agricultural development. The 

goal of this research was to map irrigated agricultural areas and explain methods and 

protocols using remote sensing. Landsat Enhanced Thematic Mapper (ETM+) data and 

time-series Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to 

map irrigated agricultural areas as well as other land use/land cover (LULC) classes, for 

Ghana. Temporal variations in the normalized difference vegetation index (NDVI) pattern 

obtained in the LULC class were used to identify irrigated and non-irrigated areas. First, 

the temporal variations in NDVI pattern were found to be more consistent in long-duration 

irrigated crops than with short-duration rainfed crops due to more assured water supply for 

irrigated areas. Second, surface water availability for irrigated areas is dependent on 

shallow dug-wells (on river banks) and dug-outs (in river bottoms) that affect the timing of 

crop sowing and growth stages, which was in turn reflected in the seasonal NDVI pattern.  

A decision tree approach using Landsat 30 m one time data fusion with MODIS 250 m 
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time-series data was adopted to classify, group, and label classes. Finally, classes were 

tested and verified using ground truth data and national statistics. Fuzzy classification 

accuracy assessment for the irrigated classes varied between 67 and 93%. An irrigated area 

derived from remote sensing (32,421 ha) was 20–57% higher than irrigated areas reported 

by Ghana’s Irrigation Development Authority (GIDA). This was because of the 

uncertainties involved in factors such as: (a) absence of shallow irrigated area statistics in 

GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and 

potential for development in GIDA statistics, (c) errors of omissions and commissions in 

the remote sensing approach, and (d) comparison involving widely varying data types, 

methods, and approaches used in determining irrigated area statistics using GIDA and 

remote sensing. Extensive field campaigns to help in better classification and validation of 

irrigated areas using high (30 m ) to very high (<5 m) resolution remote sensing data that 

are fused with multi temporal data like MODIS are the way forward. This is especially true in 

accounting for small yet contiguous patches of irrigated areas from dug-wells and dug-outs. 

Keywords: irrigated areas; MODIS; Landsat ETM+; Ghana; NDVI 

 

1. Introduction  

Agriculture is Ghana’s most important economic sector; more than half of its population depends 

on agriculture directly and indirectly [1]. Generally, in West Africa, the land is used in a continuum of 

the whole toposequence with the cultivation of crops from the upland to the valley bottom [2]. The 

potential for irrigated rice production in the inland valley swamps (IVS) and river flood plains is about 

1.9 million ha in Ghana, according to the World Bank’s estimate [3]. The potential for full-control 

irrigation development, based on soil and water availability, is estimated at 346,000 ha [3]. Irrigated 

areas were estimated to be around 30,900 ha under water management, neglecting inland valleys and 

wetlands [4]. Data from the Ghana Irrigation Development Authority (GIDA) suggest, however, that 

the irrigated area under full or partial control is only around 10,000 to 11,000 ha.  

In Ghana, land for irrigation has been developed since the 1960s, and the GIDA was established in 

1977 for the development, management and extension of services for all national irrigation 

projects [5]. The activities of small-scale farmers were based on rice and other crops in the 22 irrigated 

agricultural areas administered by the GIDA. The Irrigation Development Center (IDC) was 

established in 1991 as a center for improving technology, extension and training of the GIDA. The 

Japan International Cooperation Agency (JICA) implemented a Mini-Project Technical Cooperation, 

“Research cooperation in the development of irrigation agriculture,” for three years from 1993 to 1995, 

focused on building the research capacity of IDC. However, agricultural productivity did not improve 

because of poor water management and farming techniques, insufficient maintenance and management 

of irrigation facilities, shortage of water and inadequate support services for farmers in the pilot areas. 

Increasing population has led to expansion of urban/peri-urban agriculture in Ghana [6]. 

Several studies have been conducted on how to map agricultural areas [7-12] using advanced 

techniques in satellite image analysis. However, mapping of irrigated areas proved to be a challenge 
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due to the diverse range of irrigated plot sizes, crops and water sources used by farmers [13,14]. The 

use of Landsat imagery proved to be fast, cheap and successful in mapping small irrigated areas. This 

was demonstrated by Draeger [14] in estimating the irrigated land area of the Klamath River basin in 

Oregon. Thiruvengadachari et al. [15] also used Landsat data to identify irrigation patterns in semiarid 

areas in India and Rundquist et al. [16] used these to make an inventory of central pivot irrigation 

systems in Nebraska. Abderrahman et al. [17] mapped the irrigated areas of the severely arid regions 

of Saudi Arabia using temporal Landsat Multispectral Scanner and Thematic Mapper data while 

Murthy et al. [18] used IRS LISS (Indian Remote Sensing Satellite with Linear Imaging  

Self-Scanning) data to derive a cropping calendar for a canal operation schedule in India. It was 

Thenkabail et al. [19] who demonstrated the use of time-series coarse-resolution satellite data such as 

those from the National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR) in mapping irrigated areas over the entire world. The most extensive 

study of irrigation performance assessment was carried out by Alexandridis et al. [20] using  

NOAA-AVHRR data. They investigated the Indus River basin to identify the irrigated areas and 

assessed the performance of the irrigation systems. Boken et al. [21] also demonstrated the potential of 

NOAA-AVHRR for estimating irrigated areas of three states of the USA (United States America). 

Thenkabail et al. [22] used Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data 

to generate LULC and a map of irrigated area for the Ganges and Indus river basins. Over time, the use 

of various satellite data has evolved along with diverse and novel techniques in analyzing them. 

Kamthonkiat et al. [23] described a technique called peak detector algorithm to discriminate between 

rainfed and irrigated rice crops in Thailand. Biggs et al. [13] used MODIS time series combined with 

ground truth data, agricultural census data and Landsat Thematic Mapper (TM) data to map  

surface-water irrigation, groundwater irrigation and rainfed ecosystems of the Krishna River basin in 

the southern Indian peninsula. Quansah et al. [24] stressed the importance of NDVI time series to 

identify and separate different types of irrigation, including surface water, shallow dug wells, lift 

irrigation and groundwater irrigation.  

The above literature has consistently reported that single-date fine-resolution imagery, acquired at 

critical growth stages, is sufficient to precisely identify where irrigation was applied, even including 

minor and informal irrigation. However, it is not adequate to derive the intensity of irrigation and 

cropping calendar of the crop identified. In contrast, a multi-date time-series coarse-resolution imagery 

can be used to distinguish the differences between irrigated crop types and to derive the irrigation 

intensity [15,16,19,22]. Therefore, a methodology to integrate the use of both the fine- and  

coarse-spatial-resolution data sets must be developed [19]. The gap between the use of fine-resolution 

satellite data and the use of coarse-resolution satellite data must be bridged. Moreover, the existing 

methodology must be modified to derive irrigated areas using fine-resolution satellite data.  

Water use for irrigated agriculture can be determined accurately only from an equally precise 

estimate of irrigated areas. Precision can be achieved only when discrepancies among area estimates 

are effectively eliminated. Previous studies have used either only Landsat or only MODIS data for 

mapping irrigated land. This study aims to map irrigated areas in Ghana using both Landsat ETM+ 

(from the years 2000 to 2001) and MODIS 250 m data. More specifically, irrigated areas at 30 m 

resolutions were determined. The whole land area of Ghana was covered by this study. Irrigation types 

in Ghana vary from large-scale surface water to fragmented and shallow groundwater (along the rivers 
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and inland valleys). Also, very small fragmented supplemental irrigated areas exist. Climate and 

elevation vary widely as well. Thus, using finer spatial-resolution data is ideal for mapping irrigated 

land in Ghana. 

2. Study Area 

Ghana lies at the shore of the Gulf of Guinea in West Africa and occupies a total area of about 

24 million ha (ha). It borders Burkina Faso to the north, Togo to the east and Côte d’Ivoire to the west. 

The country is divided into ten administrative regions and six ecological zones, dominated by semi-

deciduous forest and Guinea savannah (Figure 1). 

Figure 1. Study area of Ghana, West Africa, with regions. The figure shows the Volta 

Basin with provinces. (River basin derived from SRTM 90 m DEM). 

 

The topography is predominantly gently undulating with slopes less than 5%. Rainfall ranges from 

700 mm/yr in the coastal zone to 2,200 mm/yr in the southwestern rainforests. Most parts of the 

country have one distinct rainy season and one dry season lasting longer in the northern parts of Ghana 

than in the south [25]. 

About 64% of Ghana’s surface lies in the Volta River Basin, Tamale is one of the major cities in the 

region. Ghana has a population of about 19 million, with an annual growth rate of 2.7%, and its 

average population density stands at 71 persons/km2 and ranges from 20 persons/km2 in the north to 

900 persons/km2 in the capital in the south. Forty-four percent of the population lives in urban areas. 

The Greater Accra region (hosting the capital city Accra) is the most densely populated and the most 
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urbanized, as 88% of its almost 3 million people live in the urban areas [26]. Total irrigation potential 

has been estimated at 1.9 million ha. Another estimate of potential gives 0.7 million ha for small-scale 

irrigated sawah rice farming (bunding, leveling and puddling fields for irrigated rice cultivation) in 

inland valley watersheds and, by including the flood plains, this potential could reach 1 million ha [4]. 

Agriculture is the major source of Ghana’s economy. It contributes 36% to the gross domestic 

product (GDP) and employs 60% of Ghana’s labor force [27]. About 36% of Ghana’s population lives 

below the poverty line (US$1/day) [28]. Poverty is substantially higher in rural areas and in northern 

Ghana than in urban areas and southern Ghana [26]. 

3. Data Sets Used for Mapping Irrigated Areas at 30 m  

The 30-m Landsat map of irrigated area of Ghana was developed using the following data sets: 

3.1. Landsat ETM+ Data 

Sixteen Landsat ETM+ tiles were downloaded from the US Geological Survey (USGS), global land 

cover facility website (http://edcsns17.cr.usgs.gov/NewEarthExplorer/). All the images belong to the 

nominal year 2000 and their spectral characteristics are shown in Table 1. All of them except one tile 

coincide with the main cropping season. One image over the central part of the basin, coinciding with 

the non-cropping season, was classified and dealt with separately. All the Landsat ETM+ tiles were 

converted into reflectance to normalize the multi-date effect [29,30] using a model developed in 

ERDAS Imagine [31]. 

Table 1. Characteristics of satellite sensor data used in the study. 

Sensor 
Spatial 

(m) 
Bands 

Band Range 
(mm) 

Irradiance 
(W m−2sr−1 µm−1) 

Landsat ETM+ 30 

1 0.45–0.52 1,970  

2 0.53–0.61 1,843  

3 0.63–0.69 1,555  

4 0.75–0.90 1,047  

5 1.55–1.75 227  

7 2.09–2.35 1,368  

MODIS 250 
1 0.62–0.67 1,528 

2 0.84–0.88 974 

3.2. MODIS 250-m Data 

The MODIS data for Ghana were obtained from NASA [32] and composed data sets from 

individual images [33]. The 250-m 2-band MODIS data (centered at 648 nm and 858 nm; Table 1) 

collection 5 (MOD09Q1) were acquired for every 8 days during the crop-growing seasons: June 2000 

through May 2001. The data were acquired in 12-bit (0 to 4,096 levels), and were stretched to 16-bit  

(0 to 65,536 levels). Further processing steps are described in [22,24]. 
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Table 2. Irrigated areas from national statistics (extracted from Ghana Irrigation Development Authority). 

Name of scheme Region District 

Year when 

construction 

was completed 

No. of 

households 

Irrigation system 

Potential 
Area 

developed (ha) 

Area in 

use (ha) 
 Crops 

Anum Valley Ashanti Ejisu-Juabeng 1991 115 140 89 0 Pump Rice, okra, pepper 

Akumadan Ashanti Offinso North 1976 97 1,000 65 0 Sprinkler Tomatoes, maize, cowpea 

Sata Ashanti Sekyere West 1993 52 56 34 24 Gravity Okra, maize, cowpea 

Subinja Ashanti Wenchi 1976 32 121 60 6 Sprinkler Eggplant, pepper, okra 

Okyereko Central Gomoa 1976 131 111 81 42 Gravity pump Rice, chilies, okra 

Mankessim Central Mfantsiman 1978 32 260 17 17 Pump Watermelon, sweet potato 

Amate Eastern Amate 1980 127 203 101 0 Gravity pump Maize, pepper 

Dedeso Eastern Fanteakwa 1980 69 400 20 8 Sprinkler Tomato, pepper 

Dawhenya Greater Accra Dangme West 1978 235 450 200 150 Gravity pump Rice 

Weija Greater Accra Kasoa 1984 171 1,500 220 0 Sprinkler Pepper, tomato, cabbage 

Kpong Greater Accra Kpong 1968 2,300 3,028 2,786 616 Gravity Rice, passion fruit 

Ashiaman Greater Accra Tema 1968 120 155 155 56 Gravity Rice, maize, pepper, okra 

Tanoso Grong Ahafo Rechiman 1984 211 115 64 15 Sprinkler Okra, maize, cowpea 

Libga Northern Savelugu 1980 41 20 16 16 Gravity Rice, maize, pepper, okra 

Bontanga Northern Tolan-Kumbungu 1983 550 570 450 390 Gravity pump Rice, maize, pepper, okra 

Golinga Northern Tolan-Kumbungu 1974 80 100 40 16 Gravity Rice, maize, pepper, okra 

Vea (ICOUR) Upper East Bolgatanga 1980 2,000 1,197 850 500 Gravity Rice, tomato, sorghum 

Tono (ICOUR) Upper East Kassena Nankane 1985 3,250 3,860 2,490 2,450 Gravity Rice, soybean, tomato 

Africa Volta Ketu 1983 1,024 950 880 880 Gravity Rice, okra 

Kpando-Torkor Volta Kpando 1976 106 356 40 6 Sprinkler Okra, maize 

Aveyime Volta North Tongu 1975 83 80 60 0 Gravity pump Rice 

Kikam Western Nzema East   22 27 27 0 Pump Rice 

Total       10,848 14,699 8,745 5,192     
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3.3. Secondary Data Sets 

In addition to Landsat ETM+ and MODIS tiles, the following secondary data sets were used: 

3.3.1. SRTM 90-m Elevation 

The Shuttle Radar Topography Mission (SRTM) obtained elevation data on a near-global scale to 

generate the most complete high-resolution digital topographic database of Earth [34,35]. Since the 

topography of the river basin under investigation is highly diverse, the SRTM elevation data set is 

useful in separating inland valleys, valley fringes with low elevations and high elevated areas with 

forest vegetation. The SRTM data (90 m resampled to 30 m) was also used to perform image 

segmentation based on a drainage network. 

3.3.2. Irrigated Areas According to the GIDA 

Irrigated area statistics (Table 2) were obtained at the sub-national level (regional level), and 

represent the total area irrigated by surface water. The data supplied by the GIDA came from the same 

year (2000-01) as our remote-sensing analysis [26]. 

4. Methods 

An overview of the comprehensive methodology for mapping irrigated areas using Landsat ETM+ 

30 m and MOD09Q1 250 m 8-day time series data presented in Figure 2. The methodology consisted 

of following steps: 

4.1. Image Normalization 

The main purpose of this procedure is to normalize the multi-date effect [29,36] of Landsat images 

for better classification. The Landsat images were converted into top of atmosphere (TOA) reflectance 

using a reflectance model built in ERDAS Imagine Modeler during this project based on the equations 

and algorithms presented in [29,36]. The digital number images were first converted to radiance and 

then to reflectance using the equations given in [29,36]. The meta-data needed for normalization are 

available in the header files. 

4.2. Mega-file Data Cube (MFDC) Creation 

A mega-file data cube (MFDC) is akin to hyperspectral data cube. A MFDC consists of a large 

number of bands in a single file that would help obtain information of all bands with a single click at 

any point or pixel. Thenkabail et al. provide a detailed discussion on MFDC concept [37]. In this 

study, a MFDC of 51 layers, for a total volume of 35 GB, came from 6 non thermal bands from each of 

six Landsat ETM+ tiles and 45 NDVI bands from each of four MOD09Q1 tiles. This MFDC covers 

the entire Ghana for 2000-01 [19] and was analyzed for various segments (Figure 2).  
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Figure 2. Overview of the methodology for mapping irrigated areas using MODIS data. 

 

4.3. Image Segmentation 

The mega-file data cube (MFDC) was divided into three distinct zones (see Figure 2) based on 

(a) inland valleys, (b) road corridors, and (c) other than these two; the idea behind the segmentation 

process is to focus more on the segments having higher amounts of agricultural area. Such segments 

would be classified into more classes than the others for better delineation of different agricultural 

classes using the protocols presented in Figure 2.  
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4.4. Classification and Class Spectra Generation 

Each segment of Landsat and MODIS MFDC was then classified using unsupervised ISOCLASS 

clustering K-means [38]. The number of classes varied from 30 to 100 based on the areas covered by 

the segment and complexity of the landscape. For example, the inland valley segment was mostly in 

valley bottoms and valley fringes, and 40 initial classes will be sufficient to determine distinct 

irrigation types. Since the road corridor segment covered large areas with complex irrigated 

groundwater and non-irrigated lands, it was classified into 100 classes. 

4.5. Grouping of Classes with Decision Tree Algorithms 

Decision tree (DT) algorithms [24,39] involve factors such as NDVI, individual band reflectivity, 

and thermal temperatures to identify and label a class and/or resolve a mixed class. A rule-based DT 

algorithm (e.g., Figure 3) helps in identifying, grouping, and labeling many classes. However, there  

are often several classes that remain “mixed”. A class is determined as pure or mixed based on the 

field-plot data, very high resolution (<5 m) imagery, and bispectral plots (see Section 4.7).  

Figure 3. Decision tree algorithm for resolving 60 classes derived from Landsat ETM+ 

MODIS 250-m data. The Landsat 30-m data were classified along with NDVI spectral 

signatures generated from the MODIS 250-m time-series data of year 2000-01. This 

decision tree helped to group the classes into 11 distinct categories. 
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4.6. Spectral Matching Techniques (SMTs) 

Spectral matching techniques (SMTs) match the class spectra derived from classification with an 

ideal spectra-derived MODIS 250 m MFDC based on precise knowledge of land use from specific 

locations [40]. Spectral signature matching (SSM) techniques are traditionally developed for 

hyperspectral data analysis of minerals [40,41]. Time-series data, such as the monthly MODIS NDVI 

data, are similar to hyperspectral data (12 months in time-series data). These similarities imply that the 

SMTs, applied for hyperspectral image analysis, also have potential for application in identifying 

agricultural land use classes from historical time-series satellite imagery. 

4.7. Class Identification and Labeling Process 

The class identification and labeling process involves the use of the following data sets (Figure 2): 

 Bi-spectral plots  

The spectral properties of the classes obtained through unsupervised classification were examined 

on the mega-file using ISODATA statistical cluster algorithm for multi-dimensional data (ERDAS, 

2008). The bi-spectral plot for all classes was obtained by plotting the spectral reflectance of Band 3, 

Red (Landsat), on the x axis and the spectral reflectance of Band 4, near infrared (Landsat), on the y 

axis [22]. From these plots, the mean NDVI values of the classes were grouped into different clusters 

based on their spatial location. Each cluster contains classes with more or less identical land cover/land 

use. Then, each class within a cluster was individually subjected to a process of class identification 

described in detail by [22]. 

 Field plot data 

A total of 173 field plot points collected across Ghana during several ground truth missions by the 

International Water Management Institute (IWMI) were used for (a) class identification and 

(b) accuracy assessments. 

 Google Earth data set 

Since Google Earth provides very high-resolution images from 30 m to sub-meter resolution for 

free and accessible through the Web, this data set was also used for class identification and 

verification, especially to ascertain whether a class is irrigated or rainfed cropland. Though Google 

Earth does not guarantee pinpoint accuracy, the zoom-in views of high-resolution imagery were used 

to identify the presence of any irrigation structures (e.g., canals, irrigation channels, open wells). It was 

observed from the digital globe option on Google Earth that most of the high-resolution imageries 

were acquired after year 2000 and, on average, Google Earth high-resolution imagery is one to three 

years old (Google Earth Help). When definitive answers were not available (e.g., absence of irrigation 

structures), we did not use that particular Google Earth data point in the analysis. Google Earth  

high-resolution imagery, when used along with other distinct data sets, provides supplemental 

supportive results. 
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 MODIS time series 

Since the Landsat ETM+ images represent a single-day scenario during the cropping season, 

MODIS time series (250 m resampled to 30 m) were used to derive the seasonal variations for the 

same pixel, thus deriving the cropping intensity for each pixel. The classified map is overlaid on the 

MODIS to derive the statistics. This information is used to build time-series curves for the irrigated 

pixels. The cropping calendar sequence of the land use is derived from these time-series curves. 

Annual average NDVI values and timing of the onset of ‘greenness’ are properties of the NDVI time 

series that allowed separation of land use land cover classes. Annual NDVI in both continuous and 

double irrigated systems exceeded annual NDVI in rainfed systems, reflecting the higher NDVI in 

areas irrigated with surface irrigation. 

4.8. Resolving the Mixed Classes  

The class identification and labeling process (e.g., Figure 3) helps in identifying, grouping, and 

labeling many classes. However, some complex classes remain unresolved as mixed, as purity of these 

classes could not be adequately validated using field-plot data and/or very high resolution imagery, 

and/or bispectral plots, and/or other means. The mixed classes have more than one class in them. For 

example, some of fragmented shallow groundwater irrigated areas are spectrally (e.g., NDVI, band 

reflectance) mixed with forest classes. In this study, we found inland valley wetland forest classes, 

typically had spectral similarity with shallow groundwater irrigated areas. In such cases, we adopted a 

number of steps to resolve the mixed classes. First, we masked the mixed class and reclassified the 

class using the mega file data cube covering this mixed class area. Such finer classification on a 

focused area, helped resolve some mixed classes. Second, we used additional information such as 

elevation and slope to resolve the mixed classes. For example, irrigated crops are grown in very flat 

slopes (e.g., valley bottoms) where as inland valley forests are mostly along the valley slopes. 

Geographic information systems (GIS) spatial modeling approaches were adopted to resolve mixed 

classes [37]. Overlay, matrix, recode, sieve and proximity analysis [31] based on the theory of map 

algebra and Boolean logic [42-44] were some of the spatial modeling techniques used. The mixed 

classes was first masked out from the original Landsat/MODIS data set Together with other spatial 

data layers (precipitation zones, elevation zones and tree cover categories) and spatial modeling, 5 to 

10 or more sub-classes were identified (depending on complexity and area extent). The identification 

and labeling process as described previously was repeated afterwards (Figure 2). 

4.9. Accuracy Assessment 

Accuracy was assessed using [45]:  

100
TIFP

IFPCIA
Aia  (1) 

100×
TNIFP

NIFPIA
Ec 100×

TNIFP

NIFPIA
Ec (2) 

100×
TIFP

IFPNIA
Eo 100×

TIFP

IFPNIA
Eo (3) 
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where 

Aia = accuracy of irrigated area classes (percentage) 

Ec = errors of commission for the irrigated area class (percentage) 

Eo = errors of omission for the irrigated area class (percentage) 

IFPCIA = irrigated field plots classified as irrigated areas (number) 

TIFP = total irrigated field plots (number) 

NIFPIA = non-irrigated field-plot points classified as irrigated areas (number) 

TNIFP = total non-irrigated field plots (number) 

IFPNIA = irrigated field plots classified as non-irrigated areas (number) 

5. Results and Discussions 

5.1. Land Use/Land Cover Maps and Area Statistics 

Altogether, 12 LULC classes were identified and labeled (Figure 4) based on the above 

methodology. The LULC areas, including irrigated areas and percentages of total geographical area, 

are shown in Table 3. The final class name or label (Figure 4, Table 3) is based on the predominance 

of a particular land use class (e.g., surface irrigation: medium scale, surface water dominant). For 

example, class 5 in Table 3, “Rainfed croplands, mixed savannas and some barren areas,” is 

predominantly rainfed cropland during the crop season. Classes 3 and 4 are predominantly located 

along inland valleys, and they have high water potential for agriculture. Class 6 irrigated areas are 

predominant in the Greater Accra region and upper eastern part of the study area. Classes 10, 11 and 

12 forest classes are predominantly in western, central and Volta regions (Figure 4). 

Figure 4. The final 12 LULC classes, including irrigated classes in Ghana, 2000-01.  
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Table 3. Distribution of land use/land cover for the 12 final classes in Ghana. 

LULC (no.) Area (ha) % 

01. Water bodies 765,866 3.2

02. Settlements, open areas 410,984 1.7

03. Savannas: highly degraded, barren lands  3,989,299 16.7

04. Savannas: grasslands, shrub lands, woodlands mixed with rainfed agriculture 7,973,176 33.3

05. Rainfed croplands mixed savannas and some barren areas 2,048,495 8.6

06. Surface irrigation: medium scale, surface water dominant 32,438 0.1

07. Supplemental irrigation: minor scale and fragmented, conjunctive use 181,032 0.8

08. Wetland irrigation and open areas with moist soils  540,814 2.3

09. Lowland vegetation: typically inland valleys, scattered agriculture 1,168,428 4.9

10. Forests: fragmented  5,163,070 21.6

11. Forests: secondary, younger  531,746 2.2

12. Forests: mature, less disturbed  1,110,477 4.6

Total 23,915,825 100

Major irrigated areas were identified in the upper east (northern part) and Greater Accra regions. 

Minor irrigation areas, including fragmented and conjunctive irrigation (class 7) areas along inland 

valleys and river corridors, tend to have good water potential for agriculture. Rainfed riparian 

agricultural areas spread throughout the study area. Wetlands and low land areas were identified in 

7.2% of total geographical areas, these areas are highly suitable for rice areas, however inland valleys 

are rich soils and good ground water potential zones [46]. 

5.2. Accuracy Assessment 

A qualitative accuracy assessment was performed to check whether the irrigated area is classified as 

irrigated or not, without checking for crop type or type of irrigation, by using equations 1, 2 and 3. The 

accuracy assessment was performed using field-plot data to derive robust understanding of the 

accuracies of the data sets used in this study. The field-plot data were based on an extensive field 

campaign conducted throughout Ghana during the cropping season by International Water 

Management Institute researchers and they consisted of 173 points. Accuracy assessment provides 

realistic class accuracies where land cover is heterogeneous and pixel sizes exceed the size of uniform 

land cover units [13,22,47]. For this study, we had assigned 3 × 3 cells of Landsat pixels around each 

of the field-plot points to one of six categories: absolutely correct (100% correct), largely correct (75% 

or more correct), correct (50% or more correct), incorrect (50% or more incorrect), mostly incorrect 

(75% or more incorrect), and absolutely incorrect (100% incorrect). Class areas were tabulated for a  

3 × 3-pixel (9 pixels) window around each field-plot point. If 9 out of 9 Landsat classes matched with 

field-plot data, this was then labeled absolutely correct and so on (Table 4).  

The accuracies and errors of the map of LULC are assessed based on intensive field-plot data 

(Table 4). The 173 field-plot data points reserved for accuracy assessment from Ghana field campaigns 

provided a fuzzy classification accuracy of 67–100% for various classes (Table 4). 
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Table 4. Fuzzy accuracy assessment from field-plot data. Numbers in parentheses indicate the fuzzy correctness percentage. Values 

in the table indicate the % of field-plot windows in each class with a given correctness percentage. 

Land use/land cover (no.) 

Sample 
size 
(N) 

Total 
correct 

(%) 

Total 
incorrect 

(%) 

Absolutely 
correct 
(100%) 

Mostly 
correct (75% 
and above) 

Correct 
(51% and 

above) 

Incorrect 
(51% and 

above) 

Mostly 
incorrect 
(75% and 

above) 

Absolutely 
incorrect 
(100%) 

 

01. Water bodies 2 100 0 100 0 0 0 0 0 

02. Settlements, open areas 5 77 23 55 0 23 23 0 0 

03. Savannas: highly degraded, barren 

lands 55 77 23 55 0 23 23 0 0 

04. Savannas: grasslands, shrub lands, 

woodlands mixed with rainfed 

agriculture 45 78 22 56 22 0 22 0 0 

05. Rainfed croplands, mixed savannas 

and some barren areas 9 89 11 44 44 0 11 0 0 

06. Surface irrigation: medium scale, 

surface water dominant 7 93 7 86 0 7 7 0 0 

07. Supplemental irrigation: minor 

scale and fragmented, conjunctive 

use 3 67 33 33 17 17 17 17 0 

08. Wetland irrigation and open areas 

with moist soils 4 75 25 75 0 0 25 0 0 

09. Lowland vegetation: typically 

inland valleys, scattered agriculture 8 94 6 88 0 6 6 0 0 

10. Forests: fragmented 22 84 26 14 68 2 2 24 0 

11. Forests: secondary, younger 10 90 10 80 0 10 10 0 0 

12. Forests: mature, less disturbed 3 67 33 50 0 17 33 0 0 

 173 83 18 61 13 9 15 3 0 
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5.3. Comparisons with National Statistics and Other Studies 

The final classified map of irrigated areas was compared against irrigation area statistics obtained 

from Ghana at the regional level. Data was obtained for 10 major regions. The Landsat and MODIS 

derived areas consistently over estimated the official estimates in all regions by 20 to 57%  

(Figure 5(A,B)). The overestimation is obvious in 1:1 plot (Figure 5(C)). The map of irrigated area of 

Ghana was compared with other studies such as the global irrigated area map (GIAM) [37] and FAO 

(Table 5). 

Figure 5. Comparison of remote sensing derived irrigated areas of Ghana with national 

statistics: (A) plot without 1 outlier point, (B) plot with outlier point, (C) visual aid to 

compare the distribution of points against a perfect 1:1 relationship. 

  

 



Remote Sens. 2011, 3                           

 

831

Table 5. The map of irrigated area of Ghana was compared with other studies such as 

GIAM (global irrigated area map) version 2.0 [44] and FAO. 

Source (Spatial Resolution) Surface Irrigated Area (ha) 
1Landsat + MODIS (30 m) 32,421 

GIAM-V2.0 (AVHRR, 10 km) 28,411 

FAO / UF (national reports, 10 km) 30,900 

Note: 1 Present study. 

5.4. Effect of Resolution on Irrigated Areas 

Ideally, the area under irrigation or any LULC type should be the same irrespective of being 

mapped by sensors with different resolutions. However, areas determined from sensors with different 

resolutions often do not match, as reflected in Table 5. High-resolution satellites cover smaller areas, 

and it is more likely that a single pixel covers a similar LULC class and allows fewer errors in the area 

estimations. This is why higher and more accurate irrigation areas are obtained using finer spatial 

resolution. Uncertainties in area calculations are always likely to be higher with coarser resolution 

imagery. Strong relationships exist in areas between resolutions (Table 5), but often there is a 

consistent under-estimation of areas in coarser resolution imagery, resulting in smaller irrigation areas. 

6. Conclusions 

This research combined Landsat ETM + and MODIS 250 m time-series data with field-plot data to 

map irrigated areas and other LULC classes in Ghana, which is dominated by smallholder agriculture. 

The image segmentation approach combined with decision tree algorithm was used to map 

heterogeneous and patchy irrigated areas, including minor irrigation areas that dominate Ghana’s 

agricultural landscape. 

The irrigated area classes were mapped with a fuzzy classification accuracy between 67 and 93% 

Overall, irrigated areas were over-estimated by 20 to 57% using remote sensing data, methods, and 

approaches when compared with Ghana Irrigation Development Authority (GIDA) provincial 

statistics. Sources of uncertainties include (but not limited to): (a) absence of shallow irrigated area 

statistics in GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and 

potential for development in GIDA statistics, (c) errors of omissions and commissions in the remote 

sensing approach, and (d) comparison involving widely varying data types, methods, and approaches 

used in determining irrigated area statistics using GIDA and remote sensing. 

This study demonstrates significant strengths in using Landsat ETM+ 30 m data (in fusion with 

time-series MODIS data) in identifying fragmented and minor irrigation sources, such as surface 

irrigation (large-, medium- and small-scale schemes), inland valleys, and shallow dug wells and dug 

outs. However, dug-wells, dug-outs, inland valleys, and other fragmented irrigated areas are better 

mapped using very high resolution (<5 m) data in fusion with time-series coarser resolution data.  
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